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Purpose of this review

This review presents an overview of recent findings related

to changes in brain activity with increasing anesthesia

mainly obtained with brain imaging and electrophysiological

techniques in humans.

Recent findings

Recent studies have revealed that the brain as a whole is not

affected to the same degree by anesthetics, but that

specific brain regions (and particular cognitive processes

mediated by these regions) are more sensitive to anesthesia

and sedation than others. Inhibition of activity in multimodal

association cortices (such as parietal and prefrontal

association cortices) by sedative concentrations of

anesthetics produces amnesia and attention deficits,

whereas activity in unimodal cortices and in the thalamus

remains largely unaffected by low doses of anesthetics.

Activity in the midbrain reticular formation, thalamus, and

unimodal cortices appears to be suppressed only by

anesthetic concentrations causing unconsciousness.

Besides those regional suppressive effects, anesthetics

impair functional connections between neurons in

distributed cortical and thalamocortical networks, which

also contributes to the state of anesthesia.

Summary

Anesthetics produce changes in the patient’s behavioral

state by interacting with brain activity via at least two

mechanisms: the dose-dependent global and regionally

specific suppression of neuronal activity and the disruption

of functional interactivity within distributed neural networks.
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Introduction
In the past, methods to assess the effect of anesthesia on

brain activity were based only on behavioral outcome

measures or on electrophysiological recordings, such as

recordings of the electroencephalogram (EEG) or evoked

potentials [1]. In the past decade, the progress in neuro-

science techniques has extended this range of methods to

include positron emission tomography (PET) and func-

tional magnetic resonance imaging (fMRI) [2]. These

techniques measure the site of hemodynamic and meta-

bolic changes caused by anesthesia-induced alterations

in brain activity, while electrophysiological techniques

reflect the electrical activity of the cortex with high

temporal but low spatial resolution.

In the clinical setting, current developments in neuro-

monitoring [e.g. the Bispectral Index (BIS)] allow a gen-

eral assessment of neuronal activity during surgery [3].

These techniques, however, do not predict movements

or hemodynamic responses to stimulation, nor do they

enable prediction of exactly when individual patients will

regain consciousness [4]. Hence, awareness (i.e. explicit

memory) [5] and implicit memory formation have been

observed [6] even under apparently adequate anesthesia

guided by neuromonitoring. Thus, important aspects of

cerebral functionality during anesthesia still remain

obscure [7]. Using the complementary features of electro-

physiological and brain imaging techniques, this gap has

partly been closed in recent years by exploring drug

effects on neural networks involved in mediating atten-

tion, auditory language processing, memory and con-

sciousness. Furthermore, elaborate studies with close

control of the hypnotic state addressing unconscious

memory formation have been performed. Therefore, this

review summarizes recent findings obtained with differ-

ent investigation techniques and presents a framework

which integrates current information.
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Brain activity during anesthesia as measured
with functional neuroimaging
Functional neuroimaging refers mainly to modern brain

imaging techniques like PET and fMRI. Both tech-

niques were successfully employed in pharmacological

research and research into anesthetic drug action during

the past decade.

Changes of cerebral blood flow, cerebral metabolism

and blood oxygenation level-dependent contrast

PET and fMRI studies indicate changes in brain activity

due to anesthetics, provided that neurovascular coupling

during anesthesia is preserved [8].Using these techniques,

dose-dependent decreases in cerebral blood flow (CBF),

cerebral glucose metabolism and the blood oxygenation

level-dependent (BOLD) signal have been demonstrated

for nearly all anesthetics [9–14,15�,16�] except ketamine

[17,18�] and nitrous oxide [19]. These actions point to a

global decrease in neuronal activity with increasing

anesthesia. The potency to decrease brain activity is pre-

sumably identical for intravenous and volatile anesthetics

judging by the relatively similar reductions of the cerebral

metabolism at comparable levels of sevoflurane and pro-

pofol anesthesia [19]. Loss of consciousness occurs at a

cerebral glucosemetabolismof around 60–65% [20]. Aside

from the global decrease in neuronal activity, some brain

regions located within the cortical association areas (e.g.

parietal and frontal association cortex), the thalamus and

the midbrain show a markedly higher decrease in CBF,

cerebral metabolism or BOLD signal compared with the

global reductions [9–14,15�,16�,19,21–24] (cf. Table 1).

These actions indicate specific effects of anesthetics to

produce unconsciousness, amnesia and attention deficits:

convincing evidence exists that the thalamus plays a

key role in anesthesia-induced unconsciousness [25,26]

because relative metabolic reductions of regional glucose

metabolism [12,25] and CBF [27] have been observed in

this area associated with adequate anesthesia. By contrast,

low anesthetic concentrations seem tohave no or only little

effect on the thalamus [22] and regions involved inprimary

information processing (Figs 1 and 2). Low drug doses,

however, have been proposed to mediate amnesia either

by a relatively unspecific depression of neuronal activity

predominantly in the cortex [28] or by specific depressant

effects on the hippocampus [29], the insula [22,30��], the

amygdala [31��], and the prefrontal cortex [30]. These

anesthetic actions seem to affect memory by an impaired

encoding of new material into memory (unspecific drug

effect due to sedation) and by the disturbed retention of

encoded material in long-term memory. The latter effect

appears to be independent of sedation and presumably

reflects specific amnesic actions of anesthetics [32��].

Although these findings partly explain unconsciousness

and amnesia, they do not provide any information about

neuronal activity related to sensory stimulation during

anesthesia. Animal studies suggest that evoked cortical

activity may be detectable even during deep anesthesia

[33]. In humans, neuronal activity has been observed

using functional neuroimaging evoked by either auditory

[15,30��,34�], visual [13] or noxious stimuli [35�] during

light and adequate stages of anesthesia (Table 1). For

example, we observed functional activation in both tem-

poral lobes evoked by auditory language processing at an

effect-site concentration of propofol of over 1.51 mg/ml

(Fig. 1). This activation disappeared at concentrations

exceeding 3.35 mg/ml. Similarly, sevoflurane decreased

auditory evoked functional activation dose dependently.

When compared with wakefulness, residual activation

was observed bilaterally at the superior temporal gyrus,

the thalamus, the striatum, and left frontal cortex at 1%

sevoflurane, whereas this activity was totally suppressed

at 2% sevoflurane [34�]. Recently, it was demonstrated

that sedative propofol and thiopental doses do not alter

the increase in CBF evoked by auditory stimuli, despite a

15% decrease in global CBF (gCBF) [41��]. Even dur-

ing unresponsiveness (mean BIS ¼ 66), a regional CBF

(rCBF) response at the left temporal lobe was observed

(although clearly diminished). Altogether, these findings

suggest that auditory stimulation still evokes cortical

activity, albeit reduced, during light stages of anesthesia.

Like auditory stimuli, somatosensory stimuli may also

cause cortical activity during unresponsiveness, but this is

apparently dependent on the stimulus used. Vibrotactile

stimuli did not activate the cortex and caused merely

thalamic activity at a propofol concentration of 1.5 mg/ml

[39]. In contrast, noxious (heat) stimuli increased CBF in

the somatosensory and midinsular cortex even at a pro-

pofol concentration of 3.5 mg/ml (i.e. during unconscious-

ness) [35�]. Interestingly, the anterior cingulate cortex, a

region implicated in pain perception [42], was activated

by heat at lower propofol concentrations. Thus, the insula

might even be active during unconsciousness (although

not mediating pain perception, but rather autonomic

responses), whereas other structures mediating pain per-

ception appear to be suppressed at propofol concen-

trations causing unconsciousness [35�].

The effects of ketamine on CBF [17] and cerebral

glucose metabolism [17,18,43] on resting brain activity

are clearly distinguished from other anesthetics. Sub-

anesthetic doses of ketamine produce a global increase

in rCBF, the most profound changes in brain structures

being related to pain processing [17]. Under noxious

stimulation, however, subanesthetic ketamine decreased

pain and stimulus evoked brain activity, with the greatest

reductions observed in the thalamus and insula [44�].

Besides these analgesic actions, ketamine appears to

interact at low doses with brain activity related to working

memory, in brain regions comprising frontal and parietal

cortical areas and the putamen [45], as well as with
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activity related to the encoding and retrieval of episodic

information in frontal and hippocampal regions [46�].

Changes of functional interactivity during anesthesia

Neurons across the brain are thought to interact with one

another, for example to forward information between

cortical areas and to facilitate the binding of distinct

perceptual attributes into a unitary, conscious percept

[37,47]. Disconnections of these functional interactions

within neural networks are probably important for drug

effects such as amnesia and unconsciousness [48]. Neu-

roimaging studies indicate that functional connectivity

can be examined under anesthesia, and that anesthesia

may be associated with changes in network connectivity

[26,38��]. White and Alkire [26] demonstrated impaired

corticocortical and thalamocortical connectivity at anes-

thetic concentrations causing unconsciousness. More

recently, it has been shown that a reduction of interac-

tivity in motor networks by 0.5 minimum alveolar con-

centration (MAC) sevoflurane caused a functional

dissociation between the two hemispheres (i.e. the net-

work was confined to just one hemisphere). At 1 MAC

sevoflurane, motor network connectivity was completely

eliminated [38��]. These findings suggest a dose-depen-

dent reduction of synchronized temporal correlations

between neurons within functional networks during

anesthesia. The hypothesis that connectivity disruption

is a mechanism that decreases brain activity and produces

behavioral changes is also supported by recent EEG

work demonstrating the electrical uncoupling of diverse

brain regions by anesthetics [49]. These studies show

that besides the regionally suppressive actions of anes-

thetics, disconnecting effects appear to be equally im-

portant for producing anesthesia and depressing neuronal

activity.

Brain activity during anesthesia assessed
with electrophysiological methods
Because anesthetics affect the EEG in a characteristic

manner, a variety of methods are available providing

628 Technology, education and training

Figure 1. Brain activation during language processing (awake

versus sedation)

Functional brain activation elicited by auditory language processing
obtained during wakefulness (a) and during deep sedation (i.e. when
individuals did respond to the language processing task) (b). During
wakefulness, auditory language processing elicited brain activity in a
temporo-frontal network. Deep sedation (propofol effect-site concen-
tration between 1.51 and 3.35 mg/ml) restricted the measurable brain
activity to regions in and around the primary auditory cortex on both
hemispheres. At propofol effect-site concentrations exceeding 3.35 mg/
ml, no functional brain activation related to auditory stimulation was
detectable. Adapted with permission from Heinke et al. [15�].

Figure 2. Effect of increasing propofol sedation on auditory event-related potentials

Reflects primary auditory processing (P1), auditory
sensory memory (MMN) and music-syntactic
processing (ERAN). Amplitudes (mean � SE) of P1,
MMN, and ERAN during different levels of sedation
adjusted with target-controlled infusion of propofol:
wakefulness (propofol concentration 0.0 mg/ml, mean
Bispectral Index (BIS) ¼ 95), light sedation (propofol
concentration 0.5 mg/ml, mean BIS ¼ 89), deep
sedation (propofol concentration 1.5 mg/ml, mean
BIS ¼ 72) and unconsciousness (propofol
concentration 2.5–3.0 mg/ml, mean BIS ¼ 50). The P1
amplitude was unchanged by sedation and markedly
decreased, but still detectable, during
unconsciousness. In contrast, amplitudes of the MMN
and the ERAN were progressively decreased with
increasing sedation and abolished during
unconsciousness. This indicated differential effects of
propofol sedation on auditory sensory memory and
music-syntactic processing when compared with
primary processing of the acoustic input. Adapted with
permission from Heinke et al. [36�] (see reference for
further details).



indices of anesthetic depth derived from the EEG or

evoked potential waveform [4,50]. Although they allow a

global estimation of brain activity, however, they may not

be sufficiently accurate to differentiate between sedation

levels or to assess specific brain function during drug

administration. Recordings of long-latency auditory

evoked potentials (LLAEPs) or auditory event-related

brain potentials (AERPs) provide a way to differentiate

between sedation levels [51�] and to precisely assess the

cognitive state of a patient during sedation. In contrast to

midlatency auditory evoked potentials, whose detection

mainly reflects activity within the primary auditory cor-

tex, LLAEPs (or AERPs) reflect neural mechanisms that

may also involve other cortical areas (such mechanisms

underlying, for example, auditory sensory memory, music

and language processing, and orientation to novel stimuli)

[52,53]. The first positive deflection in the waveform of

the LLAEP is the P1, which is followed by a negative

deflection, the N1. The P1 reflects the sensory encoding

of auditory stimulus attributes [52,54], whereas the N1

appears to reflect the conscious detection of discrete

changes in any subjective dimension of the auditory

environment [55]. The N1 amplitude decreases with

increasing sedation [36�,56,57] but is still detectable in

individuals unresponsive to verbal commands [36�]. In

contrast, the P1 amplitude is only affected by uncon-

sciousness but appears to be unchanged during deep

sedation (Fig. 2) [36�]. The presence of P1 and N1 at

a BIS indicating unconsciousness (the neural generators

of both components are assumed to be located in the

auditory cortices, although both components receive

contributions from different neural populations) confirms

neuroimaging studies [15�,30��,34�], indicating neuronal

activity in the auditory cortices during light stages of

anesthesia (Figs 1 and 2).

An AERP which has in some studies been used to

investigate effects of sedation on auditory processing is

the mismatch negativity (MMN) [52,58]. The MMN is

elicited by deviant stimuli that occur in a series of

repetitive standard stimuli (e.g. in a repetitive series of

standard tones, a frequency deviant elicits an MMN).

TheMMN is thought to reflect operations of the auditory

sensory memory, a preattentive short-term store for

acoustic information. Recently, a dose-dependent break-

down of auditory sensory memory has been shown by

MMN recordings [36�,51�,56,57]. The MMN amplitude

decreased with increasing sedation and was not detect-

able at a BIS of 50 (Fig. 2) [36�]. This suggests a

continuous decrease in neuronal activity within the

MMN-generating network located in temporal and fron-

tal brain areas with increasing sedation as well as a

collapse of this memory system during unconsciousness.

Due to methodological difficulties, the effects of seda-

tive drugs on language processing have not yet been

investigated with AERPs. Interestingly, however, the

processing of syntactic information has been investigated

using musical stimuli. Music-syntactic irregularities elicit

an early right anterior negativity (ERAN); this com-

ponent is generated in brain regions that also serve the

syntactic processing of language. Recent studies show

that the ERAN, like the MMN, continuously decreases

with increasing sedation caused by propofol (Fig. 2), and

that the ERAN is eliminated at higher BIS values (above

68) than the MMN (S. Koelsch, W. Heinke, D. Sammler,

D. Olthoff, unpublished data). The latter finding

suggests that language functions are impaired by lower

sedative drug doses than the functions underlying

auditory sensory memory, and that neural mechanisms

important for syntax processing do not operate at BIS

values of around 68.

Another event-related potential (ERP) widely used to

evaluate cognitive function is the P3. Generally speaking,

this ERP component has been suggested to represent the

transfer of information to consciousness, a process that

involves different brain regions [59]. The classical pari-

etally distributed P3 (often labelled as P3b) occurs only

when individuals consciously detect a target stimulus.

This ERP has been taken to reflect the operations of a

mechanism that updates a model of the environment or of

a context in working memory [60]. Irrespective of atten-

tion, however, certain stimuli may nevertheless elicit an

earlier, more frontally distributed P3 (labelled P3a) [61],

which is taken to reflect an involuntary switch of atten-

tion to an unexpected or relevant stimulus [62,63].

Recently, the effect of propofol on the P3 has been

thoroughly investigated: when individuals listened pas-

sively to a series of tones, a P3a was elicited by deviant

stimuli during wakefulness and light sedation, but abol-

ished during deep sedation [36�]. In another experiment

in which individuals were trained to respond to deviant

stimuli via a button press response, however, a P3a (but

no P3b) was visible (although clearly reduced) even

under deep sedation (mean BIS ¼ 68; at this level, indi-

viduals did not respond behaviorally to the task) (S.

Koelsch, W. Heinke, D. Sammler, D. Olthoff, unpub-

lished data).

To sum up, these findings indicate that neural processes

located at the level of the primary auditory cortex remain

intact during sedation. In contrast, the cognitive pro-

cesses underlying the generation of MMN, ERAN

and P3 (which involve neural generators located beyond

the level of primary sensory cortices) are significantly

affected by sedation. The processes underlying the

generation of MMN and P3 are observable, however,

although clearly reduced at a BIS of 68. The total break-

down of these processes occurs at BIS values lower

than 68, presumably in a BIS range of between 68

and 50.
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Brain activity during anesthesia assessed
with behavioral tests
Numerous studies have investigated explicit and implicit

memory after anesthesia. Explicit memory is mainly the

result of inadequate anesthesia [5,7,64�]. In contrast, the

possibility of implicit memory formation remains con-

troversial. Very close control of anesthetic depth (BIS 50–

55), however, prevents implicit memory formation [40��].

This tallies with neuroimaging and EEG studies demon-

strating a lack of cortical activity under adequate anes-

thesia and contrasts with previous studies reporting the

possibility of memory formation during unconsciousness

[6,65,66]. Most of the ERP and imaging studies, however,

investigated volunteers in the absence of surgery and

thus do not rule out the risk of implicit memory formation

facilitated by surgical stimulation under adequate

anesthesia [65,67].

Conclusion
Functional neuroimaging complements electrophysio-

logical and behavioral assessments of brain activity

during anesthesia, providing a better understanding of

how anesthetic depth affects neuronal networks mediat-

ing specific cognitive functions.
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